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Abstract

This report briefly describes the algorithms that comprise the

Variational Trajectory Optimization Tool Set (VTOTS) package.

The VTOTS is a software package for solving nonlinear constrained
optimal control problems from a wide range of engineering and sci-

entific disciplines. The VTOTS package was specifically designed to

minimize the amount of user programming; in fact, for problems that

may be expressed in terms of analytical functions, the user needs only

to define the problem in terms of symbolic variables. This version

of the VTOTS does not support tabular data; thus, problems must
be expressed in terms of analytical functions. The VTOTS package

consists of two methods for solving nonlinear optimal control prob-

lems: a time-domain, finite-element algorithm and a multiple shoot-

ing algorithm. These two algorithms, under the VTOTS package,
may be run independently or jointly. The finite-element algorithm

generates approximate solutions, whereas the shooting algorithm pro-

rides a more accurate solution to the optimization problem. A user's

manual, some examples with results, and a brief description of the
individual subroutines are included in this report.

Introduction

Background

The optimal control problem featured in this report is described as follows. Consider a

dynamical system defined by a finite-dimensional set of ordinary differential equations, and

assume a finite-dimensional vector of time-varying control variables. The optimization problem

is to choose the control variables to satisfy the given boundary conditions while a given

performance index (or cost functional) is minimized (or maximized). Methods available for
the numerical solution of optimal control problems generally fall into two distinct categories:

direct and indirect. Direct methods, which involve parameter optimization, directly minimize

the performance index by varying the values of the parameters. Indirect methods, on the other
hand, minimize the performance index indirectly by satisfying first-order necessary conditions

for optimality that are established from the calculus of variations.

The direct approach to the solution of optimal control problems requires parameterization of

the control and state time histories and results in a nonlinear programming problem to solve.
The choice of parameterization schemes is not unique, and success of the direct methods has

been achieved with Hermite polynomials (ref. 1), Chebyshev polynomials (refs. 2 and 3), single-
term Walsh series (ref. 4), and splines (ref. 5). After the parameterization scheme is chosen, a

parameter-optimization algorithm is used to determine the free parameters. These algorithms

are in common use today and include variable metric techniques or quasi-Newton methods
(ref. 6) and variations on gradient methods. Gradient methods (refs. 7 and 8) were developed to

surmount the "initial guess" difficulty associated with other methods, such as Newton algorithms.

The gradient methods are characterized by iterative algorithms for improving estimates of the

state and control time histories. First-order gradient methods rapidly improve the state and

control histories during early iterations when sufficiently far from the optimal solution; however,
these methods exhibit only linear convergence close to the solution. Second-order gradient

methods provide quadratic convergence but are more sensitive to initial guesses. Conjugate

gradient methods exploit the approximately quadratic variation of the objective function near



the solution to accelerateconvergence.Reference9 containsa thoroughdescriptionof the
gradientmethodandotheralgorithmicmethodsin optimalcontrol.

Becausethe direct methodis presentedasa nonlinearprogrammingproblem,the solution
is muchmoredifficult to obtain, especiallyfrom a softwarestandpoint.Conversely, when the

indirect method satisfies the first-order necessary conditions, the problem is converted into a

system of equations tha't form a multipoint boundary-value problem (MPBVP), which can be

solved with simpler root-finding techniques.

Analytical solutions to a MPBVP are generally unobtainable except for the simplest problems;

hence, numerical methods are usually employed. The two main methods for solving a nonlinear
MPBVP are shooting and quasi-linearization methods. Shooting methods (refs. 10 through 12)

are frequently used and can be described as follows. The differential equations and the known
initial conditions are satisfied at each stage of the process, but the final conditions are not

satisfied. A nominal solution is generated by guessing the missing initial conditions and

integrating the differential equations forward to reduce the error in the final conditions at each
iteration. Quasi-linearization methods (refs. 7 and 13) are used to choose nominal functions for

the states and costates that satisfy as many of the boundary conditions as possible. The control is

then found by using the optimality conditions. The system and costate equations are linearized
about the nominal values, and a succession of nonhomogeneous, linear, two-point boundary-

value problems are solved to modify the solution until the desired accuracy is obtained. Other
indirect methods include the method of adjoints (ref. 14) and finite-element methods (ref. 15).

The system of equations in these methods is typically solved by Newton-Raphson (ref. 16) or

continuation algorithms (ref. 17).

A few of the commercially available programs for solving optimal control problems are

mentioned below. The first two programs solve general MPBVP's, whereas the last two are

particularly designed to optimize flight-vehicle trajectories.

The Chebyshev Trajectory Optimization Program (CTOP) is useful in several practical

applications (ref. 2). This program solves problems directly and parameterizes the functions

using Chebyshev polynomials. Penalty functions enforce the equations of motion and path
constraints. The Nonlinear Programming for Direct Optimization of Trajectories (NPDOT)

package uses piecewise polynomials and collocation to satisfy the differential equations. Results

presented in reference 1 show that the NPDOT runs more quickly than the CTOP does. Both

programs are generic optimization programs that are not limited to aerospace problems.

The Program to Optimize Simulated Trajectories (POST) targets and optimizes point-mass

trajectories for a powered or unpowered vehicle that operates near a rotating oblate planet

(ref. 18). The POST allows the solution of a wide range of flight problems that include
aircraft performance, orbital maneuvers, and injection into orbit. The user can select the

optimization variable, the dependent variables, and the independent variables from a list of more

than 400 program variables. The POST also operates on several computer systems. Another
useful program is Optimal Trajectories by Implicit Simulation (oTIS): The OTIS is a three-

degree-of-freedom (point-mass) optimization program that includes a six-degree-of-freedom and
multiple-vehicle simulation (ref. 1). The user can simulate aircraft, missiles, reentry vehicles,

and hypervelocity vehicles. The methods used were chosen to improve speed, convergence, and

applicability of the OTIS over existing performance programs. Both the POST and the OTIS
are reliable and accurate programs, but they specifically target aerospace applications.

What Is the VTOTS? :

The VTOTS package is a set of optimal control algorithms, each based on a common, problem-

specific, user setup and interface. The two methods for solving optimal control problems are a



finite-elementand a shootingmethod. Eachmethodusesa symbolicmathematicspackageto
organizethe systemequationsand to calculatesystemJacobians.The VTOTS packagealso
usesthefinite-elementalgorithmto obtaininitial estimatesfor themoreaccurateshootingcode.
Combiningthe finite-elementresultswith a shootinginitial conditionprovidesa fast solution
techniquefor nonlinearoptimalcontrolproblems.

TheVTOTSpackagewasdesignedto minimizetheuserprogrammingneededto solveoptimal
controlproblemsandstill providea quick,accuratesolutionprocedure.Threesoftwarepackages
that areusedby theVTOTS aredescribedin the nextsection.

VTOTS Software

TheVTOTS optimalcontrolalgorithmsusethreecomputerlanguages:

1. MACSYMA

2. FORTRAN

3. MATLAB

MACSYMAis a symbolicmathematicspackagethat computesanalyt-
ical derivativesof mathematicalexpressions.A VTOTS preprocessor
waswritten in MACSYMA,a languagedevelopedby Symbolics,Inc., to
organizeandcalculateexpressionsneededby theVTOTS algorithms.
The preprocessorthen translatesthesemathematicalexpressionsinto
FORTRAN.

Theresultof theVTOTS preprocessoris a seriesof FORTRANsub-
routinesthat arewritten to disk. Eachsubroutineis generatedby"the
MACSYMAalgorithm.

MATLAB is a computerlanguagethat specializesin matrix manipu-
lation andvectoranalysis.Tile VTOTS programand associatedalgo-
rithmsarewritten in MATLAB, a languagedevelopedby Mathworks,
Inc. TheFORTRANsubroutinessuppliedby MACSYMAarecompiled
into a single,problem-specificmoduleusinga MATLAB compiler.The
plant moduleis thenaccessedby MATLAB fimetionfiles.

Capabilities

The VTOTS packageprovidessolutionsto a varietyof optimal controlproblemswith both
thefinite-elementandshootingalgorithms.Bothalgorithmscansolvenonlinearoptimalcontrol
problemswith multiple-stateor state-ratediscontinuities.Also, the boundaryconditionscan
be any nonlinearfunction of the states. The finite-elementalgorithm,but not the shooting
algorithm, solvesproblemswith control and/or state constraints. Tile numberof control
constraintsis arbitrary; however,it is assumedthat the samenumberof constraintsacts
over the entire trajectory,and only one state constraint is active at a time. l_lrthermore,

for problems with state constraints, the control is assumed to be continuous across jmlction

points of constrained and unconstrained arcs. Assuming continuity of the control is tantamount
to saying that the ttamiltonian of the problem is regular; that is, a unique optimal control exists

for a given state and cost.ate time history. The user should be aware of these assumptions and

carefiflly study solutions obtained from the VTOTS package, especially for constrained prol)lems.

In general, the user shoul(t b'e aware that with the finite-element algorithm, or any discretization
algorithm, tile output is only a candi¢late solution to an extremal.

For problems with control constraints, the user is not required to specify the swit(:hing

structure of the constraint; in other words, the user does not need to know or specify in the
problem setup when the constraints will be active or inactive. However, for problems with state
constraints, the user must know tile order in which the constrained and unconstrained arcs occur.

Further, if the program has active control and state constraints, a switching structure must be

3



specifiedonly for the stateconstraints.Detailsand examplesof handlingconstrainedoptimal
controlproblemsarepresentedin subsequentsections.

Finally, neither the finite-elementalgorithmnor the shootingalgorithm handlesoptimal
controlproblemswith singulararcs.

Purposeand Overview of Report

This report describesthe finite-elementandshootingalgorithmsandexplainshowto solve
optimal controlproblemswith the VTOTS. The section"TechnicalDescriptionof Methods"
definesan optimal controlproblemand providesa technicaldescriptionof the finite-element
andshootingalgorithms.A brief discussionof eachalgorithmandthe VTOTS packageis then
presented."ConcludingRemarks"summarizestheuniquefeaturesof the VTOTS.AppendixA
isauser'smanualforsolvingoptimalcontrolproblemswith theVTOTSandincludesanexample
and somehelpfulhints. AppendixB containsseveraladditionalexamplefilesandoutput for
problemsthat aresolvablewith theVTOTS.Finally,appendixC brieflydescribesthe VTOTS
MATLAB files.

Symbols

F

f

g

H

J

J1

k

L

M

7Tt

N

q

S

tf

ti

U

V

x

vector of right sides for state and costate equations

right side of differential equations

state and control constraints

Hamiltonian

scalar performance index

scalar augmented-performance index

slack variable

integral portion of performance index

number of elements

number of controls

number of phases

number of states

order of state inequality constraint

state inequality constraints

final time

time at, ith event

control vector

vector containing states and costates

state vector

state vector at event points

state vector at midpoints

state time derivative vector



(_x

5),

_7,r

),

v

¢

e

Abbreviations:

CTOP

I

MPBVP

NPDOT

OTIS

POST

VTOTS

state variation

costate variation

multiplier vector

time scales

costate vector

multiplier vector

vector of Lagrange multipliers

discrete portion of augmented performance index

discrete portion of performance index

.vector of boundary condition expressions

Chebyshev Trajectory Optimization Program

identity matrix

multipoint boundary-value problem

Nonlinear Programming for Direct Optimization of Trajectories

Optimal Trajectories by Implicit Simulation

Program to Optimize Simulated Trajectories

Variational Trajectory Optimization Tool Set

Technical Description of Methods

In this section, a nonlinear constrained optimal control problem is defined. Then, a brief
description of a finite-element method and a shooting method is presented to solve the optimal

control problem. Further details of these methods are given in the cited references.

Generalized Optimal Control Problem

An optimal control problem is defined below. First, the notation is defined and the first-order

necessary conditions for unconstrained problems are derived. Then, the inclusion of constraints

on the system is considered, and the additional conditions for optimality are defined.

Consider a system that is defined from initial time t O to final time tf by a set of n states x and
a set of m controls u. The states of the system are governed by a set of first-order differential

equations referred to as state equations. During the interval t O to ti, discontinuities in the states

as well as in the state equations may occur at interior points (i.e., times between tO and t f).
These interior, initial, and final points are referred to as events, and the intervals between events

are referred to as phases. The time of event i is denoted as ti, and the states and controls in
phase i are denoted as x (i) and u (i).

The optimal control problein of interest in this report is to choose a control histor:( that
minimizes a performance index J and satisfies the state equations ±(i) = f(i)[x(i),u(i_] and

boundary conditions. Elements of a performance index may be denoted with an integrand
L (i)[x (i), u(i)], which is continuous and differentiable within each phase, and a discrete flmction



¢ of the statesand/or times at anyof the events. A generalclassof suchproblemswith N
phases involves choosing u(t) to minimize

J=¢[x(l)(tl),X(1)(t2),x(2)(t2),X(2)(t3),...,x(N)(tN+t);tl,t2,...,tN+l]+ L (i) x(i),u (i) dt (1)
i=1 t_

subject to the state equation constraints

_((i) : f(i) [x(i),u (i)] (t i < t < ti+l;i = 1,2,... ,N) (2)

with boundary conditions specified as

¢ Ix (1)(tl),x (1)(t2),x (2)(t2),x (2)(t3),..-,x (N)(tN+l);tl,t2,...,tN+l] =0 (3)

With the introduction of Lagrange multiplier functions A(t), referred to as costates, and

discrete Lagrange multipliers u, an augmented performance index Jt may be defined as

J1 = ¢ + uT_P + E L(i) + X(i)T f(i) - ±(i) dt
i=1 ti

(4)

For convenience, (I) and H are defined as

ff, = o + vT g, (5)

an(]

• H (i) -- L (i) + A(i)rf (i) (i = 1, 2,... ,N) (6)

Tile first-order necessary conditions for optimality are derived by requiring J1 to be stationary.

The conditions are (ref. 7)

k (i) = f(i)Ix (i), u (i)] (7)

j_(i)v_ OH(O_ tI(i ) (8) :
0x(i)

OH (i) (ui= H ) = 0 (9)
Ou(i)

where each equation holds for t i < t < ti+l and i = 1,2,..., N. The boundary conditions are

g,=0

A(i-1)T(ti) --

)_(i)T(ti) --

O_

Ox(i 1)(ti)

O'P

0x (i) (ti)

(i = 2,3,...,N + 1)

(i = 1,2 .... ,N)

(10)

(11)

(12)

and the transversality conditions are

0_

Ott
-- - H (1) (tt) = O

6

(13)



Ot---i_+ H(i-1) (ti) - H (i) (ti) = 0 (i = 2, 3,..., N) (14)

cOtN + l
--+ H(N)(tN+I) = 0 (15)

The optimal control problem defined above is a nonlinear MPBVP. The solution to the

MPBVP yields a stationary point of J1, or a candidate optimal solution.

The problem can now be extended to include control and state inequality constraints on the

system. Control constraints (see a standard optimal control text, such as ref. 7, for details) are
defined as a function of the states and the control (where the control appears explicitly, but the
states may not) of the form

g (x, u) __0 (16)

To solve this problem, the constraint g is adjoined to the cost function with a Lagrange multiplier
function tt(t). This augmentation is equivalent to redefining the Hamiltonian of the system H
as

H = L + ATf + ttTg (17)

The necessary conditions in equations (7) through (15) remain unchanged when the new
definition of H is used. However, the multiplier tt requires additional necessary conditions.

For a minimizing problem, the conditions are as follows: a multiplier of zero when the constraint

is not active (g < 0) and a nonnegative multiplier when the constraint is active (g = 0).

Consider problems with state inequality constraints of the form S(x) _< 0. One of several
methods available to solve problems with state constraints is to take total time derivatives

of the constraint until the control appears explicitly; this method requires substitution of the

differential equations for the state rates. If q time derivatives are required for the control to

appear explicitly, then the constraint is referred to as a qth-order state inequality constraint.

Now the qth time derivative of the constraint plays the same role as the control constraint g(x, u)
above. After a Lagrange multiplier function rl(t ) is introduced, the Hamiltonian is

H = L + ATf + _T dqs
dtq (18)

where the following statements apply:

1. The multiplier r/= 0 when the constraint is not violated (S < 0).

2. The value dqS/dtq = 0 when the constraint is active (S = 0).

3. The multiplier rl _> 0 when the constraint is active if minimizing cost.

In addition to taking time derivatives of the constraint, tangency conditions must be met

at the point of entry onto a constrained arc. These conditions are that S and the first (q - 1)
time derivatives of S are zero at the beginning of a constrained arc. Also, the states must be

continuous at the beginning and end of each arc. These boundary conditions are placed in _b;
because of these conditions, the user must define the switching structure of the constrained

arc. Thus, the user must decide when the trajectory enters and leaves the constraint boundary,

because each independent arc of the trajectory is a new phase with corresponding boundary
conditions.

Without loss of generality, all constrained problems can be set up as minimizing problems with

the constraints defined as less than or equal to zero. The VTOTS also requires this constraint
format.

7



Finite-Element Method

The finite-element method converts the continuous-time necessary conditions into nonlinear

algebraic equations. The process for generating the algebraic equations is outlined below. Full
details of the method are described in reference 15.

For simplicity, the finite-element method is outlined for a one-phase problem, that is, one with

no internal events. To begin the derivation of the finite-element equations, the first variation

of an augmented performance index is taken; the resulting expression is integrated by parts so

that no time derivatives of the states x or costates ,k appear. Instead, one time derivative of the

variational states _x and variational costates 6,k appears. This appearance identifies the simple

choice of approximating functions. Next, shape functions, or approximating functions, for the

states, costates, and controls are chosen. With the expression that is developed for the first

variation, the simplest possible shape functions are chosen for the states, costates, and controls,

namely, piecewise-constant functions.

To begin tlae discretization scheme associated with tiiis :finiteLelement method, a time line

is broken into a series of equal segments, known as elements. The length of each element is

At = (tl - to)/M, where M is the number of elements. The endpoints of each element are
referred to as nodes. We will denote the values of the states, costates, and controls at the

element midpoints as barred symbols. Similarly, values at the nodes will be symbols with carets.

Figure 1 is an example of a time line that is broken into five elements; only the state variables

are labeled. Nodal values at the beginning and end of a phase and at all midpoint values are
treated as unl_no-wns for the states, costates, and controls. The remaining unknowns are the

discrete multipliers v and the event times ti. (See appendix A.)

"_L _2

to tl

Figure 1. Discretized time line.

The state differential equations that are discretized become

At£ At-= f(x, u) ::_ 0 ---- --xi _2- _ + "Xi+l -- _2¢fi+1
:,t=

-_M -- _fM + _2

(i= 1,2,...,M- 1)

(vhere fi denotes the value of f at midpoint i. The costate differential equations become

j_ = 0H(x, A, u, p, r/) - AtW (i = 1,2, M 1)
0X ::_ 0 ---- _i -- -_Hx i /_i-I-] -- _2-''xi-1 "'',

At _2£M -- -,2Aai -

where -f/i denotes the value of H at midpoint i. The algebraic optimality condition becomes

Hu(x,A,u,u,r_) = 0 => Hu(Ri,Xi,ui,p,f?) -- 0 (i = 1,2,...,al)

The remaining equat!ons involve the state and costate boundary conditions and the transver-

sality conditions. The same number of equations as unknowns appears in this formulation.



Additional algebraic conditions are associated with control constraints. The finite-element

algorithm handles the control inequality constraints g(x,u) < 0 by introducing a positive
function k 2, such that g + k 2 = 0. The function k is referred to as a slack variable and

becomes an unknown. Note that when on the constraint, g = 0; therefore, k = 0. Additional

unknowns associated with state constraints are listed in appendix A.

A finite-element method yields an approximate solution to the optimal control problem. From

numerical experience, the accuracy of the solution, or closeness to the exact answer, increases

quadratically with the number of elements (ref. 15); however, for a numerically accurate answer,
a shooting method is available.

Shooting Method

The VTOTS includes a shooting algorithm for solving the necessary conditions in equa-
tions (7) through (15). The solution technique converts the MPBVP for the Hamiltonian system

(eq. (6)), subject to equation (7) and boundary conditions (eqs. (10) through (12)), into an alge-

braic root-finding problem in the values taken on by x, A, and t at the initial and terminal points

of the trajectory and at internal events. The procedure is accomplished by expressing terminal

values of x and A (their values at the end of phases) as functions of initial values (their values at
the beginning of phases). This conversion is achieved by integrating the solution of the ordinary
differential equations (eqs. (7) and (8)) from the initial values to the terminal conditions.

For simplicity, consider the case with no internal events, so that the boundary conditions of
the problem are

¢(x0, xl) =0 (19)

0¢ vT 0¢
_°_+ _x0 + Oxo - 0 (20)

0¢ vT 0¢
_'_ Oxj Oxf - o (21)

where

xo - x (0);.%- ,x(o)

xs = x (t:) ;:,s - _,(t:)

The variables x/ and ,kS are evaluated as

/o' ( )xf = x0 + T2 f(x, fi) d_ "r2 = t/ (22)

j_o1 OH XAf ----),0 - T2 =_x ( ,A, fi)dC (T 2 tf) (23)

where H is the Hamiltonian that is defined in equation (6) and is evaluated along x(t), A(t),
and fi(t), and fi is a root of

OH

Ouu (x, ,_, fi) = 0 (24)

which is obtained by numerical solution of Hu = 0 in terms of x and A at each instant. The

result is that fi appears as fi(x, A) in the calculations. The partial derivatives fix and fiA are

fix = -H_ 1 (Hux) (25)

9



fa)_= -H_O (Hu)_) (26)

where Huu is assumed to have full rank.

The variable v in equations (22) and (23) is a parameter that scales the dummy independent

variable 4,

t = r2_ (0 _< _ < 1) (27)

In the implementation of the VTOTS shooting algorithm, v is appended to x as an additional
state variable with

4- = 0 (28)

and is solved with boundary conditions appropriate to the free- or fixed-time problem. The

costate AT that corresponds to T is appended to A and is evaluated at t = tf with the appropriate
modification of equation (23).

The x, w, A, and Ar variables and their propagation expressions (eqs. (22), (23), and (28))

are concatenated to form the system

9_01V/= Vo + T2 F(V) d_ (29)

vT = [xT, T,.,xT,xr]

FT= [fT, o,-HT,-2TH]

which satisfies the equation

(V0, V/) =0 (30)

where q2 is a concatenation of equations (19) through (21), reexpressed in components of V0

and V/.

Equation (30) is solved by expressing Vf as Vf(V0) with equation (29) and employing a
Newton-Raphson iteration to obtain V0. The jth iteration is

(dkg'_ -I [(Vo)j] (j 0,1, .) (31)
(v0) +l = (v0)j - = "

The value (V0)0, the initial guess for the iteration, is usually provided by boundary values from
a converged, finite-element run. For problems addressed to date with the VTOTS, these values

have proved to be sufficiently close to the shooting solution so that no line search was necessary

in equation (31).

The Jacobian matrix d_/dV 0 in equation (31) is

d_ 09 Off/ dVf
+ (32)

dVo 0V0 0Vy dVo

w- -

z
I

i

where

f01dF dV
dVI - I + T 2 d_ (33)
dVo dV dV o -

The use of equations (32) and (33) to obtain d_P/dVo, rather than the use of direct numerical
differentiation with respect to V0, is motivated by concern for numerical stability in integrating
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V((). When the plant states x contain dissipative effects, some eigenvalues of the adjoint

dynamics in equation (8) will have positive real parts. Direct numerical differentiation of qJ(V0)

would require l)erturbation of V0, an action that could excite modes corresponding to unstalfle

eigenvahws. This probh,m is avoided through the use of equations (:12) and (33).

Although the shooting method is slower than the finite-element method, the shooting method

solution is as mmmrically accurate a,s the integrator used to t)rol)agate the state and ('ostate

equations.

Concluding Remarks

This report provides a technical overview and a brief description of the algorithms that

comprise a new software package fi)r solving optimal control problenlS. Although many excellent

programs are available fi)r this purpose, the Variat.iomd Trajectory Optimization Tool Set

(VTOTS) offers some new features.

1. The VTOTS provides two algorithms based on indirect methods; most available programs
are based on direct methods.

2. The VTOTS provides a finite-element ,flgorithm flw apl_roxilmtte sohttions and a shooting

algorithm for mmwrieally accm'ate solutions.

3. An optimal control probh,m from any discipline may I)e solved when properly formatted;

howew,r, lhis flexibility requires a VTOTS user to supply application-specific code.

The _q*pemlixes contain a complete user's nmmml thai includes a det_fih'd examph' and helpfifl

hinls. Additiomd examples, even those using w,ry fi'w elements in the finile-element _dgorithm,

show lhat a good approximation to a solution is possible. This approximation may bc used

Io st_lri the shooting algorithm. Flintily, a brief description of the VTOTS-lkIATLAB files is
im'luded.

NASA I,atl_,h'y Ih's,'m'ch ('¢,nl¢'r
[Imupl,m, VA 23(;_1-11(1{)I
April 19. 19!):1
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Appendix A

User's Manual

This appendix describes how to set up, run, and solve optimal control problems with the
VTOTS. In particular, the development of three files that are needed to run VTOTS is described.

These files are a plant module plant.mex4, a name list file namcom.nml, and a MATLAB file

vtotsinfo.m.

The first stage in using the VTOTS system is to set up the optimal control problem in a
MACSYMA-readable form; this step is the creation of a file that defines specific MACSYMA

variable names, equation lists, cost expressions, and lists of parameters that define the problem.

The MACSYMA setup file and commands for producing the MATLAB-FORTRAN interface
are described in the next section. The section entitled "Time Scaling" discusses how and when

to scale the independent variable of the problem. The "Vtotsinfo.m" section describes the

user-supplied MATLAB file that is read in by the VTOTS. That section includes a discussion
of the initial guess vector that is required for the finite-element and shooting algorithms. An

overview of the steps required to set up the VTOTS files is provided in the "Overview of Problem

Setup" section. The solution methods available to the user are described in the section entitled
"Solution Method Options." The "Output" section describes the output that is available to the

user when a VTOTS run is successfully completed. Some program diagnostics and helpful hints

are provided. Finally, a detailed example of the use of the VTOTS to solve an optimal control

problem is presented.

Using MACSYMA for Problem Setup

The first step in solving an optimal control problem with the VTOTS is to set up the problem

in MACSYMA-readable form. This process separates the dynamics, boundary conditions, and

performance index of an optimal control problem and assigns these expressions to MACSYMA-

specific variables. A general problem statement for an optimal control problem was given

previously.

The setup file. The following list of MACSYMA variable names must be loaded into the
MACSYMA memory stack. These variables must be loaded into the file problem.mac. Standard

MACSYMA syntax must be followed when these expressions are set up. See the MACSYMA

Reference Manual (ref. 19) for details.

stlist list of

ctlist list of

phi scalar

thi scalar

ellist list of

delist list of

psilist

tsilist

glist

qlist

state variable names

control variable names

cost expression that is a function of states at events only

cost expression that is a function of time at events only

integral cost terms; corresponds to L in the performance index

differential equations; corresponds to f in the problem statement

list of boundary conditions that arc a flmction of states at events only;

each term in psilist will be zeroed in tile solution of the problem

list of boundary conditions on time for each phase; may be empty

list of state and control inequality expressions

list defining the switching structure and the qth time derivative of a state

constraint

12



namcom

namarray

list of scalarFORTRANvariablesfor placementin theparametername
list; usefulfor parametersthat varyacrossa familyof problems;for
example,an initial conditioncouldbeput in namcom and thenchanged
without havingto rerunMACSYMA

"list of lists" of variablesappearingin the namelist that needto be
dimensionedin FORTRAN;variablesareexpressedin namarray with the
correctdimension;for example,namarray: [[a,3],[b,4],[f,7]]; dimensions
a at (3),b at (4), f at (7);namarray is optional

The variablesphi and psilist havea commonconventionfor definingeventconditions.In
thesevariables,a statenamefollowedby twoindicesis used.Thefirst indexdenotesthe phase
number,andtheseconddenotesthe initial or final timeof thephase,1for initial and2 for final.

Thevariablesdelist, glist, andqlist arelistsof sublists.Theycontainonesublistfor each
phase.Referto thesectionentitled "AdditionalExampleFiles" for further clarification.

Variable names to avoid. The following variables cause errors that may not be detectable

by the MACSYMA preprocessor. In the following, # denotes a number and * denotes a wild
card.

c#

d#

e#

emq*

MACSYMA command line variable storage

MACSYMA display line variable storage

MACSYMA internal variable sequence

variable-name string reserved by VTOTS

The user must avoid the variables sin, cos, log, and exp because these strings are treated as

the corresponding function names. Also, the user must avoid using the tangent function in the
setup file because MACSYMA does not successfully convert this function to FORTRAN. The

user is responsible for ensuring that each variable name used in the MACSYMA problem setup
does not begin with the letters i, j, k, l, m, or n because these letters are reserved for integers in

FORTRAN. Do not use thyme as a variable except in thi and tsilist. Also, any MACSYMA

keyword that is used as a variable name leads to unpredictable results. The user should ahvays
check the MACSYMA output for error messages.

Example setup file (problem.mac). This example will help the reader understand how

the MACSYMA setup file is defined. A complete optimal control problem example is presented
in the section entitled "A Detailed Example."

Consider this linear-quadratic optimal control problem: find u(t) to minimize the scalar
performance index J, where

J = u2(t)j] dt

subject to

with boundary conditions

= x (t) + u(t)

x(0) =o

x(1) = 1

13



The followingfile (problem.mac) loadsthis probleminto MACSYMA:

stlist : [x] ;

ctlist : [u] ;

glist : [[]];

qlist: [[]];

phi : O;

thi : 0;

ellist : [x^2+u-2] ;

psilist : [

x(l,l)-xO,

x(l,2)-xf

];

tsilist:

delist:

namcom:

/*defines the state variable names*/

/*defines the control variable names*/

/*no control constraints specified*/

/*no state constraints specified*/

/*no discrete cost on states defined*/

/*no discrete cost on times defined*/

/*quadratic cost function*/

/*Notice the indices for boundary conditions*/

/* (1,1) - Ist phase, initial time */

/* (1,2) - 1st phase, final time */

/*The same index scheme is used in phi*/

[thyme(1)-1]; /*(1) - final time of the first phase*/

[[
x+u

]]; /*differential equations */

[xO,xf]; /*these variables are found in the FORTRAN namelist*/

Tile MACSYMA comments (delimited t)y/* an(1 */) oll the right (1o not n(;cd to app(',ar.

Creating the MATLAB plant module (plant.mex4). In this se(:tion, a listing of file
names and UNIX commands is given to show how to use the MACSYMA preprocessor and

how the MACSYMA-pro(hlced files are compiled into a single pr(,1)lem-spe(:ific mo(hfie. Sexeral
versions of MACSYMA an(1 FORTRAN are awfilal)le, and these w_ry from one ma(:hin(_ t(,

an(,thcr. The existing versions of MACSYMA (version 417.100), FORTRAN (version 1.4), and

MATLAB (version 3.5i) (lescril)(_d in this r(_port ar(_ spc(:ifie to Sun SPARCstation IPC and
IPX workstations.

Aft(_r the l)r(,l,lem-sl)eeifie information h_as t)e('n set up in a file such _s problem.mac, th(;
MACSYMA l)reproecssor can t)e run. Tim MACSYMA prel)roeessor (',(resists of the fi,llowing

nine NIACSYMA script fih's that create FORTRAN tih_s:

allell.mac

allf.mac

allg.mac

allq.mac

allphi.mac

allthi.mac

allpsi.mac

alltsi.mac

plant.mac

creates allell.f

creates allf.f

creates allg.f

creates allq.f

(:reates allphi.f

('reat(;s allthi.f

(:r(_atcs allpsi.f

er(_ates alltsi.f

(:reates plant.f and namcom.nml

Th(, FORTRAN file allell.f ewduates th(_ cost intcgrand L fi,r all l)h_ts(_s. Similarly, allf.f

ewthmtes the right si(h_ of the (liffer(_ntial equations fl,r all l)ha,_es; allg.f and allq.f ewtluate
the (:onstrairlts; allphi.f and allthi.f cwduat(_ the dis(:r(_te (:(,st, t(,_rms; allpsi.f an(1 alltsi.f

evaluat(_ the },oundary conditi(,ns; plant.f is the master routin( _ that (:(,ordinates (:alls t(, the

oth(_r FORTRAN files; and namcom.nml (:ontains the varial)les in namcom.
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One additional file, plantg.f, is required to construct the plant module. This file is supplied

and does not require changes by the user. The file plantg.f is a gateway file to pass information
between the FORTRAN routines and MATLAB.

The commands for running the MACSYMA preprocessor are:

batch ("problem. mac") ;

gentranin("plant .mac", ["plant. f"] );

gentranin("allf .mac", ["allf. f"] );

gentranin("allell .mac", ["allell .f"] );

gentranin("allphi .mac", ["allphi .f"] );

gentranin ("allthi .mac", ["allthi. f"] );

gentranin ("allg .mac", ["allg. f"] );

gentranin("allq.mac", ["allq. f"] );

gentranin("allpsi .mac", ["allpsi. f"] ) ;

gentranin ("alltsi .mac", ["alltsi. f"] ) ;

quit() ;

This sequence of commands can also be placed in a file (batchfile.mac, for example) anti

batched at tile system-level command prompt by typing the following batch command:

macsyma < batchfile.mac >! std.out &

where std.out will contain MACSYMA run time information anti error messages. These

files must then be compiled with tile system FORTRAN compiler. On tile Sun systems, the
commamts are as follows:

f77 -c all*.f &

Then the plant.f and plantg.f files must be compiled with a MATLAB compiler and linked to
tile other object code with the command

fmex plant.f plantg.f all*.o

Tile result is tile plant.mex4 file, which can be moved to a convenient working directory and

accessed by MATLAB routines in much tile same way that functions are called. Figure A 1 shows

a summary of the commands for creating the plant module plant.mex4.

Any plant module that is acceptable for use with tttc shooting algorithm will also work for the

finite-element algorithm; however, tit(`` converse may not be true. For example, a plant moduh``

that includes constraints will work with tilt`` finite-clement algorithm but not with tim shooting
algorithm.

Time Scaling

Tit(', finite-element algorithm in tile VTOTS does not require special scaling of the time

parameter. However, in order to run tit(`` shooting algorithm in tim VTOTS, tit(,' llscr must scale

the time of each phase to a length of one. This procedure requires the conversion of frc(_-tim(,
problems to fixed-time problems.

The variable T/ is dcfine(l such that _/ = t/tf, where t is tim in(h``i)end(_nt variabh, and if

is the final time (possibly unknown). Because t varies monotonically from 0 to if, TI varies
monotonically from 0 to 1. Also note that

dx dx

dT! - dt t f

Thus, tile differential equations for any fixed final-tim(`` problem can b(, s(:alcd from 0 to 1 by
multiplying each equation by tilt`` desire(1 known final time.

15



files: problem.mac (USER supplied)
allell.mac (VTOTS supplied)
allf.mac "

allg.mac "
allq.mac
allphi.mac "
allthi.mac "

allpsi.mac "
alltsi.mac "

plant.mac "

commands: batch("problem.mac");
gentranin("plant.mac",["plant.f"]);
gentranin("allf.mac",["allf.f"]);
gentranin("allelt.mac",["allell.f"]);
gentranin("allphi.mac",["allphi.f"]);

gent ranin("allthi, mac",["allthi .f"]);
gentranin("allg.mac",["allg.f"]);
gentranin("allq.mac",["allq.f"]);
gentranin("allpsi.mac",["allpsi.f"]);
gentranin("alltsi.mac",['alltsi.f"]);
quit();

files: plantg.f (VTOTS supplied)

plant.f (MACSYMA generated)
allf.f "
allell.f "

allphi.f "
allthi.f "

allg.f
allq.f "
allpsi.f "
alltsi.f "

F_QB_ EnvJEmment

f77 -c all*.f & }

fmex plant.f plantg.f all*.o J
commands:

file: plant.mex4 (used by VTOTS for problem specific information)

Figure A1. Commamls for creating plant.mex4.

16



This method can be used even if the final time is not known a priori. For a free final-time

problem, define an extra state, for example T, to be solved by the system. The differential
equation for v is

/-=0

so that r is a constant. Its value is equal to the final time (as yet unknown). In this case, to

prevent the time scale from becoming negative, set r1 = t/tf = t/'r 2. Now,

dx dx .2

dll dt

Therefore, all the differential equations are multiplied by T 2.

Similarly, the VTOTS can also solve nonautonomous problems. In this instance, the time

t becomes a state, with the additional boundary condition that this new state has an initial

condition of 0; the corresponding differential equation is t = 1.

Multiphase problems can be handled by a straightforward extension of this technique.
Examples of time scaling are given in the "Additional Examples" section.

The File Vtotsinfo.m

In addition to the files namcom.nml and plant.mex4 created in the MACSYMA environ-

ment, the user must supply a MATLAB file called vtotsinfo.m. Because the VTOTS uses an

iterative method to solve MPBVP's, an initial guess is required. The file vtotsinfo.m stores
this initial guess with several other optional variables.

Some variables are common to both algorithms and some are specific to either the finite-
element or the shooting algorithm. All the variables are discussed below.

Variables common to the finite-element and shooting algorithms. The following
variables may be defined in vtotsinfo.m; if not defined, they are not used:

prob_name

timestate

scale

comment about the current problem; placed in single quotes

integer between 1 and number of states in problem, which corresponds

to position of time state; timestate defined only for plotting purposes;
defining timestate automatically scales the x-axis of the plots to the
correct values of the independent variable

matrix of scaling factors n by" nph, where n is the number of states plus
costates and nph is tile number of phases; each row of the matrix scales

the states and costates in tile corresponding phase; the i, j element of

scale multiplies tile ith state in the jth phase; for a problem that has

been nondimensionalized, scale will dimensionalize the problem; as an

example, see the section entitled "A Two-Stage-Rocket Problem" in
appendix B

Finite-element variables. Tile following variables are defined by the user in vtotsinfo.m
if the finite-element algorithm is run:

jbcv

yin

vector of number of elements in each phase; vector length is equal to
number of phases; jbcv determines the mesh density of the solution in

each phase; jbcv _> l; this variable is required

vector of initial estimates for all unknowns; size and order of the initial

guess are defined below; this variable is required
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converge variable that defines the convergence criterion; default value is 1 x 10 9;

stmwtimes usefltl to raise this convergence value if the code approaches a

solution but does not reach it; raising convergence value allows tile user to

look at the answer before fldl convergence is reache(t to see if the solution

is t)eing approached or not; this varialfle is optional

In order to use the finite-element method, estimates must be provided for all mlknowns.

Consider a single-phase probh, m. A set of unknowns occurs at the midpoint of each element

(denoted by g) and also at tile beginning and end of each pha.se i. Each set of unknowns

consists of, in the following order, the states (Xl,..., x,,), the costates (kl,..., A,,), the controls

(ul ..... u,,), the multipliers for each control constraint (#l ..... #,p), the slack variables for

each control constraint (kl .... , k,p), and the multipliers fi)r tile state constraints (ell .... , rhsq).

There may not be any constraints; t herefi)re, no multipliers or slack variables are required.
After these estimates have been assemt)le(l, several more estimates are a(hted to the end. These

estimates correspond to the discrete Lagrange multipliers r, that adjoin the boundary conditions

held in _ and tt) the discrete multipliers r,t that adjoin the bomMary con(titions in tsi. Finally,

all estimate fi)r the final time is made after tile multiplier estimates.

For brevity, tilt' set of mlknowns for a prol)lem with three state s, two controls, one control

constraint, one state constraint, four state boundary conditions, and one time boundary

condition is

Z = (X 1. X 2, X 3, ._1, "_2, A3, Ul. U2, #1, kl, _11)

and the format of the initial cstilnates for jbcv = 5 is

• (_.l. zl. z.,. z;_. zl. _5. _2. ul. r,2. u;_. ul. ul_. tl)

A general formula C_lll |)e defined fi)r the size of the initial estimate fih'. Name tile nunlt)er of

states tt.r, tilt" nmnl)er of controls t_u, the mnnl)er ()f control constraints lsp, the nunll)er of state

constraints i_q, the mmll)er of state |)oun(tary conditions (length ()f psi) mbc, the retail)or of time

1)oun(lary conditions (length (ff tsilist) the, and the nmnb(,r of t)hast's ltph. Also, the varial)h'

jbcv defines the mmd)er of elements per phase. The formula f(lr detcrnlining the mmfl)cr of

initial guesses for singh,-phase prol)lems is

(2mr + r_tl + 21_p + _q) (jbcv + 2) + mbc + tbc + 1

For examl)le, a singh,-l)hase i)r(lt)lem with three states, two controls, one contr()l constraint,

zero state eonstrainls, four state l)omldary conditions, one tim(' l)oun(lary condition, and five

elements would require an initial guess file ()f length (3 + 3 t- 2 + 2)(5 + 2) + .1 + 1 + 1 = 76.

For multiph,-phase pr(l|)lcms there is an (ll)vious extension ttl this fornluln. Unknowns occur

at t he midpoint (if thc eh'mcn! s in ea('h phase and at I h(" cndi)oints (if each phase. Two coincident

nodes at)l)ear at Ill(' jmlcture of t)hascs. Although these nodes occur at the same instant, the

values (if t h(' varial)h's (s! arcs, costal es, and ('tint rols) may l)e different. In fact, this (tiscont imfity

in one or more vm'iat)h,s often requires inlro(hwlion of t lie additional t)hases. The ass(unt)ly of

the initial guess yet'for is similar t(l the singh,-i)llase process. Sets of mlkn()wns for the tirst phase
are assemt)le_l as descril)ed alloy(' for the single-phase t)rol)h'm. Next, 1)efore the values of t, are

added, s('ts of mlknowns are adlh,d for the second and sul)sequen! I)hases. At the juncture of

phases, the sets of mlknowns may have i(tentieal values. When all I)h_Lses have I)een assembled,
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oneu for each boundary condition in _b and tsi and estimates for the final times of each phase

are added to the end of tile initial estimate vector. The general formula

(2nx + nu + 2up + nq)
_ jbcv (i)+ 2nph 1
i=1

+ mbc + tbc + nph

may be used to calculate tile length of tile initial estimate file.

Shooting variables. The VTOTS provides a shooting algorithm that may be run directly or

automatically (without user interface) after a successful finite-element run. The setup outlined

in this section describes how to run the shooting algorithm directly. (The VTOTS initializes the

shooting startup automatically when the finite-element/shooting method is operating so that no

additional setup beyond the finite-element initialization is required.)

As with the finite-element method, starting estimates must be provided for all shooting

method unknowns, which are the state and costate values at the beginning of each phase and

at any user-specified interior phase points (nodes). In addition, this method requires Lagrange

multipliers and a control estimate. A summary of these estimates and the variables that specify

the number and frequency of nodes is shown below and must be included in the file vtotsinfo.m.

yin

utrial

nnode

ynu

time

err

initial estimates for each phase and node; this column vector must contain the

states and costates of the first phase followed by the states and costates of the

first node, etc.; length of yin = 2nx[y_(nnode) + nph]; this variable is required

control estimate for the system at the initial time; this variable is required

column vector that contains number of nodes in each phase; the frst element in

the vector specifies the number of nodes in the first phase, etc.; a 0 is needed if

the phase does not contain nodes; this variable is required

column vector containing the Lagrange multipliers; length of ynu=mbc; this

variable is required

matrix in which each column holds node times for each phase, including a 0 to

start the phase and a 1 to end it; shorter columns (fewer nodes in a particular

phase) must be padded with O's to make the matrix square; for a single-phase

problem, the vector time must be a cohmm vector; this variable is required

specifies the integrator error; default is 1 × 10-6; this variable is optional

For example, consider a two-state, two-phase problem with two nodes in the first phase (at

times 0.2 and 0.6) and one node in the second phase (at time 0.5). Three boundary conditions
exist.

nnode = [2 1];

time = [0 .2 .6 I; 0 .5 i 0]';

err = le-6 ;

utrial = -.5;

yin = [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];

ynu = [1 2 3];

Notice that the trailing 0 in the time variable makes the matrix rectangular.
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Overview of Problem Setup

The problem-setup procedure is illustrated in figure A2. Three files in this procedure are

provided by the user: problem.mac, namcom.nml, and vtotsinfo.m. The MACSYMA file,

in this case problem.mac, can have any name; however, the other two files must be named

namcom.nml and vtotsinfo.m. The first step is to process the MACSYMA file as described

in the section entitled "Using MACSYMA for Problem Setup" to produce the files plant.f and

namcom.nml and eight other FORTRAN files. At this point, the name list file namcom.nml

has a list of parameters with no values. The user must edit this file and input the parameter

values. Next, the all*.f files should be compiled to form object files. The object files, the

plant.f file, and the plantg.f file are combined into a file called plant.mex4 through the use
of the MATLAB fmex utility. At this point, the command vtots in MATLAB causes VTOTS

to access the files plant.mex4, vtotsinfo.m, and namcom.nml. The user is prompted for

several options, which are discussed in the next section.

Solution Method Options

After the plant.mex4, namcom.nml, and vtotsinfo.m files are created, the user is ready

to start MATLAB and run the VTOTS by typing in vtots at the MATLAB prompt. A menu

appears that lists four solution method options. Th e user can choose the finite-element algorithm,

the shooting algorithm, or the finite-element algorithm followed by the shooting algorithm. The

fourth option is to exit the program, a useful choice if the name list file is not set properly or if

the initial estimate file is not the proper length. The word READY appears next to each option if

the initial estimate is the proper size. Choosing an option without a READY results in errors.

When the option for a finite-clement algorithm is chosen, the user must decide between three
different solution methods to solvc the algebraic equations. The user is prompted to ch0ose

between a continuation method, MATLAB's fsolve algorithm (ref. 20), and a Newton method.

The continuation method is a simple type of homotopy described in reference 21. This option

is the most robust of the three methods (that is, it allows for the least accurate initial estimate

and still finds a solution), but it is also the slowest. After the continuation method is completed,

the Newton method is automatically called to obtain the solution. In certain cascs, the integrator

for the continuation method is interrupted and gives an error message like

Singularity likely at t=0.456

The Newton method iscalled at thistime and may converge on the solution; in such a case, the

message can be ignored.

The fsolve algorithm in MATLAB isa Newton method with a line-searchingalgorithm. The

fsolve algorithm isgenerally not as robust as the continuation method, but itdoes run faster.

The Newton method is the fastestof the three solution methods, but it requires the best

initialestimate. Generally, the Newton method should be attempted first.Ifthe program does

not converge, then either improve the initialestimate or try another method.

The shooting algorithm runs only a Newton method. In general, a finite-element solution

should be obtained before the shooting algorithm isattempted.

Output

After a successful finite-element run is executed, the user is prompted to save a variable called

yout. This variable is the same length as the user-supplied yin and contains the converged values

of the solution vector. To save this variable, use the command

save yout.dat yout /ascii
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Figure A2. Flowchart of problem setup.
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After completion of a finite-element solution, the user is always prompted to run another

problem with a different number of elements. The number of elements is usually increased to

obtain better accuracy, but the number of elements may be decreased. The user must input the

number of elements as a vector of a length that corresponds to the number of phases. When the

number of elements is increased (or decreased), code convergence is not guaranteed.

After completion of all finite-element or shooting runs, the program stores a matrix of values

in yall. This matrix is used for plotting, and it can be saved in the same way as yout, except

the user is not prompted to do so. The save command may be evoked after completion of the

plotting. The matrix yall contains the following columns of data: the time, the states, the

costates, the controls, the Hamiltonian, and the eigenvalues of the second partial derivative of

the Hamiltonian with respect to the controls. Because the Hamiltonian is constant for each phase
at the exact solution, the value of the Hamiltonian should be on the order of 1 x 10 -5 for the

shooting code, which uses an integrator with an error tolerance of 1 x 10-61 The finite-element

algorithm is not as accurate unless the number of elements (jbcv) is large. The eigenvalues

are important because they serve as a second-order necessary condition for a minimum or

maximum. The eigenvalues should be positive everywhere for a m-inimization problem and

negative everywhere for a maximization problem. Although the multipliers for the constraints
are not available in yall, these values are available in the vector your.

The plotter routine may be called directly by the user if yall is saved. To call the plotter,
enter

plotter(nx,nu,yall)

at the MATLAB prompt. Each of these arguments should be in the workspace after a successful

run by either the finite-element or the shooting algorithm. Type help plotter for more
information.

Program Diagnostics

The following list shows some potential errors that can occur:

1. Common MACSYMA mistakes are

a. Use of an equal sign (=) instead of a colon (:).

b. Not ending a line with a semicolon (;), the result of which is usually a MACSYMA

error message stating that some variable is not an Infix operator.

c. Use of wrong number of brackets when defining MACSYMA variables. The variables

delist, glist, and qlist are "lists of lists" that require an extra set of brackets. Incorrect

number of brackets usually results in the message part fell off end.

d. Failure to compile, an indication of a mistake in the MACSYMAsetup file.

2. Segmentation violation during a call to plant.mex4 is caused by a mistake in the

MACSYMA setup file.

3. No READY light by any of the solution options (except (4) Exit Program) indicates that

the initial estimate is not the correct length. Choosing the desired option should point to

the discrepancy.

4. Failure to-provide values for the name list can produce strange results. (These values are

held in the file namcom.nml.)

5. A warning that a matrix is singular or badly scaled, given during a Newton method, means

that the Jacobian matrix is singular and cannot be inverted by MATLAB. In this case,

either the initial estimate leads to a singular matrix, the problem is poorly defined, or the
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problem is singular at the solution. Fixing this problem requires remodeling the problem
or changing tile initial estimate file.

A no converge in unod.m indicates that one of the control values during an interpolation

routine was not found. This condition is generally caused by a bad solution vector,

although convergence was obtained. Commonly, a state or control that is an angle assumes
a value in the wrong quadrant.

A no converge during a shooting run generally indicates that the initial estimate provided
by the user is too far from the solution.

A warning during compilation that a do loop is not executed in alltsi.f may be ignored.
This warning occurs whenever tsilist is empty.

Helpful Hints

In this section, helpful hints arc suggested for obtaining a solution to an optimal control

problem. It is assumed that the plant.mex4 file is bug free and the name list file is complete.

1. A finite-clement solution is almost always easier to obtain than a shooting solution;
therefore, start with finite elements.

. When using finite elements, start with a small number of elements and increase; in general,
the initial estimate does not need to be as accurate for a small number of elements as for

larger numbers of elements.

3. When increasing the number of elements, it is not necessary to increase the elements in
each phase.

4. Avoid the use of numbers in the MACSYMA setup file. Define these constants as variables
in the name list.

.

.

7.

.

.

Make sure that namcom.nml is filled in properly, in double precision. A name list that
is not filled in could lead to a singularity in the Jacobian.

Avoid the use of variables starting with i, j, k, l, m, or n.

See the example in the section entitled "State-Constrained Double Integrator" for tips on
how to get switching structure for state-constrained problems.

When solving a problem with control constraints, do not choose zero as an initial guess
for the multiplier and slack variable; this choice causes a singular matrix.

Remember that all constrained problems must be minimization problems. Any maxi-

mization problem call be transformed into a minimization problem by multiplying the
performance index by -1.

10. In general, avoid an estimate of zero for unknowns.

l l. Remember to list all known continuity conditions on states for problems with multiple
phases.

12. VTOTS cannot directly handle boundary conditions that contain states and time. If this

situation occurs, introduce another state that corresponds to the time, as shown in the
section entitled "Control-Constrained Problem."
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Detailed Example

Consider the transfer of a particle to a rectilinear path as described in section 2.4 of

reference 7. The particle has constant acceleration a. The problem is defined in terms of

four states

x x-coordinate

y y-coordinate

u velocity in x-direction

v velocity in y-direction

and one control

angle-of-acceleration vector, measured positive from x-axis

The differential equations are given by
_-=-%/

/)=v

= acos3

b = asin_

The goal is to maximize the velocity in the x-direction after 20 sec. All states are initially zero,

and the final velocity in the y-direction is zero. The final y-coordinate is 100. There is no integral

cost and no constraints are imposed.

In order to demonstrate both the finite-element algorithm and the shooting algorithm, the

problem is scaled so that the phase has a duration of one (as required by the shooting algorithm).

The differential equations are multiplied by the final time to achieve the scaling. (See the section

entitled "Time Scaling.")

Several constants are used in this problem: the magnitude of the acceleration a, the final

time, and the specified initial and final conditions on the states. These constants are assigned

values in the file namcom.nml and can be changed between VTOTS runs without repeating

the MACSYMA process.

For this problem, the MACSYMA input file is as follows:

/* This is the fixed-time trajectory optimization problem

Section 2.4, Bryson and Ho */

stlist: [x,y,u,v] ;

cl;list : [beta];

glist : [[]] ;-

qlist : [[]] ;

ellist :[0] ;

phi :u(l,2) ;

thi :0;

psilist :[x(1,1)-xO,

y(1,1)-yO,

u(1,1)-u0,

v(l, i)-vO,

y(l,2)-yf,

v(1,2)-vf] ;
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tsilist : [thyme (1) -l] ;

delist : [ [tim*u,tim*v, a,tim*cos (beta) ,a,tim*sin(beta)l] ;

namcom: [xO,yO,uO,vO,yf,vf,a,tim] ;

The name list file namcom.nml is

$namcom

XO

YO

UO

Send

= O.Od+O0,

= O.Od+O0,

= O.Od+O0,

VO = O.Od+O0,

YF = iO0.Od+O0,

VF = 0.Od+O0,

A = i.i2397d+00,

TIM = 20.0d+00,

The name list starts with a dollar sign in the second column, and no data are entered in the

first column. The MACSYMA scripts produce this file with the variable names but without the
values.

To run the problem, an initial guess must be supplied in vtotslnfo.m:

prob_name='BHO-FIX - B&H Fixed time prob:';

jbcv= [5] ;

tab=J0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.1;

1.0 100.0 100.0 10.0 0.0 1.0 1.0 1.0 1.0 0.1];

t=[O; .1; .3; .5; .7; .9;1.0] ;

yin=table i(tab, t) ;

yin=reshape (yin' ,63,1) ;

yin=[yin;ones(7, i);1.0] ;

scale=[20.O 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0];

The first line of vtotslnfo.m gives a comment that is displayed when the problem is run. This

comment is an optional declaration by the user. The second line defines the number of elements

in the first finite-element run. This variable must be defined if the finite-element algorithm is

used. The user has the option of increasing or decreasing jbcv if the first run is successful.

The next four lines demonstrate the ability of the MATLAB tablel function to create an initial

guess from linear interpolation. The matrix tab consists of 2 rows and 10 columns. The first

column is an independent variable that starts at 0 and ends at 1. The next nine columns are

(in order) estimates at the states (four columns), estimates at the costates (four columns), and

estimates at the control (one column). In this example, only crude estimates for the beginning

and ending values of the variables are made, and tablel draws straight lines between them. For

example, in the third column of tab, the estimated value of the second state y is 0 at t = 0
and 100 at t = 1. The next variable is the column vector t. This variable defines the location

on the discretized time line where the estimates are needed. Recall that estimates are needed

at the endpoints of the phase and at the midpoints of the elements (fig. 1). Next, the initial

guess of the solution is put in a column vector with the reshape command. Finally, estimates

for the discrete multipliers and time are added. Because psil|st has a length of six and tsilist

has a length of one, seven estimates of 1 for the discrete multipliers are given. Also, because

the problem has been scaled to run from 0 to 1, the estimate for the final time is 1. Finally,

25



tile variablescalescalestheoutputquantities.(Seethesectionentitled"VariablesCommon to

tile Finite-Element an(t Shooting Algorithms.") Because only the time line is scaled, the first

nuInber is 20.0 (the actual final time) and the next 8 values (states and costates) are 1.0 (t)ecause

these were not scaled). Another example of the use of scale is given in the section entitle(t "A

Two-Stage-Rocket Problem."

Running the MACSYMA commands in figure A1 creates the plant.mex4 file. After the

plant files plant.mex4, vtotsinfo.m, and namcom.nml are created, VTOTS is ready to run.

After the user enters MATLAB, typing vtots at the MATLAB t)rompt returns the following:

Variational Trajectory Optimization Tool SET
VTOTS - v. 2.0

PROBLEM SPECIFIC INFORMATION

BHO-FIX - B&H Fixed time proh:

Number of states ...................... nx _ 4

Number of controls .................... nu _ 1

Number of control constraints ......... np = 0

Max. No. of active state constraints .. nq = 0

Number of state b.cCs ................. mbc = 6

Number of time b.cCs .................. tbc = I

Number of phases ...................... nph _ 1

Number of elements in phase number I.,. jbcv(1) =5

METHOD SELECTION

(1) Finite Elements .................. READY

(2) Shooting ......................... - ....

(3) F/E - Shooting ................... READY

(4) Exit Program ..................... READY

INPUT SELECTION ...................... >>

The comment line is displayed and is followed by a brief summary of the important parameters

for this problem. Next, a list of options appears with a READY message indicating the options

that can be selected. Because the different methods require different initial guess forms, not all
methods are available at once.

In this example, the most powerful option for solving unconstrained optimal control problems

is demonstrated. Starting from the initial guess defined in vtotsinfo.m, the finite-element

algorithm is successfully run. Initial estimates can then be generated for the shooting algorithm

to produce an essentially exact answer to the problem. The finite-element/shooting option is

method 3 and is selected by typing 3 <cr> at the prompt. This selection leads to the following

message:

Enter 1 to run a continuation method

Enter 2 to run fsolve

otherwise <or> to run a Newton method
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Hitting a carriage return at this prompt begins execution of the Newton method. A sample of

tile execution follows.

the initial error is 8.14201

step slze = I

the error is 3.66657

the iteration number is I

step slze = I

the error is 0.508319

the iteration number is 2

step slze = 1

the error is 0.220737

the iteration number is 3

step slze = I

the error is 0.0100028

the iteration number is 4

step slze -- i

the error is 7.62849e-06

the iteration number is 5

step slze = I

the error is 2.0227e-12

the iteration number is 6

CONVERGED

Total run time is 20.5638

Now is your chance to save your

K>>

The given initial estimate converged with the Newton method in six iterations and required

20.5638 sec of run time. Thc step size listed in the left cohmm refers to the Newton method

line search step size. If thc error is not reduced with the clirrent step size, then the step size is

reduced. The step size is continually reduced until the error improves (decrea.ues). In this case,

all iterations improvcd tile error. Convergence is ol)tained when the error is less than I × 10 -9,

unless another value is sct by the uscr in vtotsinfo.m with the variable converge. (Scc the

scction entitled "Finite-Element Variablcs.")

Tile output after a problem converges shouhl l)e saved t)ecause many successful initial estimate

files are generated 1)y slight changcs to output files from similar prol)lcms. A descriptive name

is also helpful. For examplc,

K>> save bhofix5.dat your /ascii /double

saves the output in the file bhofix5.dat (named for the Bryson an(t Ho fixed-time problem

with jbcv = 5). The format is double-precision ascii. Usually, a good procedure is to start

with a small value for jbev and build up until the desired resolution is reached. After saving

the output, type return <cr> at the K prompt to continue. Ncxt, the code gives the option of

changing jbcv.
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Change JBCV? y or n .................. >> y

INPUT JBCV ........................... >>

Enter i to run a continuation method

Enter 2 to run fsolve

otherwise <cr> to run a Newton method

[10]

A carriage return here restarts the program, with an initial estimate automatically generated by

linear interpolation of the preceding solution.

the initial error is 0.13357

step size = 1

the error is 0.0148538

the iteration number is 1

step size _ 1

step size = i

the error is 2.86589e-05

the iteration number is 2

the error is 2.56208e-i0

the iteration number is 3

CDNVERGED

Total run time is 22.0878

Now is your chance to save yout

K>>

The initial error is smaller than it was in the first run, and the problem converges in fewer

iterations. The run time is about the same because a larger system of equations is solved at

every iteration. After saving this new solution, the user is again prompted to change jbcv. If

the reply is n this time, then the shooting algorithm is started and the convergence is displayed
on the screen.

SHOOTING

iteration i

iteration 2

iteration 3

iteration 4

abs error 2.73e-02

abs error 6.89e-04

abs error 4.18e-07

abs error 5.26e-13

total time: 165.74 seconds

The user is next given the option to plot any of the following: states, costates, controls,

Hamiltonian, and eigenvalues of the second partial of the Hamiltonian with respect to the

controls.

do you wish to plot the resuits?[y] or [n] y

do you wish to see the state histories plotted?[y] or [n] y
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After each plot of four histories, the following message appears:

type "print <cr>" to get a hardcopy of graphs

type "return <cr>" to see rest of states

K>>

Typing print <cr> would print the graphics window of four plots to the MATLAB printer. In

this case, typing return <cr> goes to the option for displaying the costate histories because only

four states are available. Next, follow the other plot options. The plots produced by VTOTS

for this example are shown in figures A3 through AT.

do you wish to see the costate histories plotted?[y] or [n] y

do you wish to see the control histories plotted?[y] or [n] y

do you wish to see the Hamiltonian plotted?[y] or [n] y

do you wish to see Eigenvalues of H_uu plotted?[y] or [n] y

These and all remaining plots in this report reflect the plots produced automatically by the

VTOTS. The states labeled xl, x2, ..., xn in figure A3 correspond to the states in stlist defined
by the user in the setup file. The costates labeled lambdal, lambda2, ..., lambdan in figure A4

correspond to the costates in the same order as the states. The controls labeled ul, u2, ..., un

in figure A5 correspond to the controls listed in ctlist defined by the user in the setup file. Also,

the second partial derivative of the Hamiltonian H with respect to u is denoted by H_uu in

figure AT. Finally, the VTOTS makes no provisions for units on the plots because the units will
change from problem to problem.

After the last plot, the VTOTS is finished; the user is then returned to the MATLAB prompt.

Note that in figure A3 all boundary conditions specified in psilist are satisfied. Also, the x-axis

on the graphs runs from 0 to 20 because the scale variable is used in vtotsinfo.m. Without
that variable, the x-axis would run from 0 to 1.
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Appendix B

Additional Example Files

This appendix presents several example problems for use with the VTOTS.

The Unconstrained Double Integrator

As a first example, consider the simple double integrator defined by two states x and v with

differential equations

x--v

and boundary conditions

%rzU

v (0) = 1

v(1) = -I

x (0) = o

x(1) =o

The problem is to find the condition u(t) that minimizes

u 2 dt
Y=_

All the information needed to set up tile appropriate mac file to produce the plant.mex4
file is shown abovel Tile mac file is

/* This is the fixed-time double integrator problem */

stlist : Ix,v] ;

ctlist : [u] ;

glist: [[]] ;

qlist:[[]];

ellist : [0.5.u-2] ;

phi :0;

thi:O;

psilist:[x(l,l)-xO,

v(1,1)-vO,

x(1,2)-xf,

v(1,2)-vf] ;

tsilist : [thyme (i)-I] ;

delist: [[v,u]] ;

namcom: [xO,vO,xf,vf] ;

The name list file namcom.nml is

Snamcom

XO =0.0d+00,

VO =l.Od+O0,

XF =O.Od+O0,

VF =-l.Od+O0,

Send
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Finally, vtotsinfo.m is set up by the user as

prob_name='unconstrained double integrator' ;

jbcv= [9] ;

yin=rand(26, i);

yin(26) =1.0;

Note that tile last estimate in yin is the final time, which is known to be 1.0.

To run the shooting algorithm directly, change vtotsinfo.m to

prob_name='unconstrained double integrator' ;

yin=[l,1,1,1] ';

ynu = [I,I,1,1]';

utrial = -2;

nnode = [0] ;

time=[O i]';

Results for tile finite-element case with jbcv = 8 are shown in figures B1 through B5. The

state histories for x and v are denoted by xl and x2 in figure B1, the corresponding costate

histories are in figure B2, and tile control history is in figure B3. The nonsmoothness of the

curves results from the use of a relatively coarse grid with eight elements. The fact that the

ttamiltonian in figure B4 is constant indicates that an accurate solution has been found. Finally,

tile eigenvMues of 02H/Ou 2 are shown in figure B5. This graph is important because its value

is always positive for all time and it provides a second-order sufficient condition that a local
minimum has been found.

State-Constrained Double Integrator

The problem described in the previous section is solved again, this time with a state constraint
of tile form

S(x,v) = x - l

with first,- and second-order time derivatives

S (x,v) = x = v

) (x,v, u) = V = u

B(,cause the control u first appears in the second tinm derivative of S, this parameter is a second-

order state constraint. In order for VTOTS to handle this problem, the user must decide on a

switching structure for the constraint. From the results of the unconstrained problem, one might

assume the solution is composed of an unconstrained arc, followed by a constrained arc, followed

t)y an mlconst.rained arc. For certain values of l, this solution is correct; if so, the MACSYMA

setup file would be

/* This is a fixed-final time second-order state constraint problem

Section 3.11, Bryson and Ho */

stlist:[x,v];

ctlist:[u] ;

glist : [[], [], []] ;

qlist : [[], [u], []] ;
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ellist :[0.5*u'2,0.5*u'2,0.5*u-2] ;

phi :0;

thi:O;

psilist :[x(l, l)-xO,

v(1,1)-vO,

x(2,1)-ellim,

x(l,2)-x(2, I),

v(2, I),

v(1,2)-v(2, i),

x (2,2)-x(3, I),

v(2,2)-v(3,1),

x (3,2) -xf,

v(3,2)-vf] ;

tsilist : [thyme (3)-i] ;

delist: [[v,u],

[v,u],

[v,u]] ;

namcom: [xO,vO,xf ,vf ,ellim] ;
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Figure B1. Unconstrained, double-integrator state histories.
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Figure B5. Unconstrained, double-integrator eigenvalues of H,,,,.

The problem has now been constructed as a three-phase problem. The same differential

equations hold for each phase. The variable qlist that holds the state constraint information
consists of three parts, one for each phase. For the first phase, qlist is empty, an indication
that no constraints: are active. In the second phase, the state constraint iS assumed to be active;

therefore, S is put in qlist. Finally, the third phase is unconstrained, so qlist is empty again.

The user must specify the boundary conditions for this problem in psilist. Recall that the
tangency conditions S = 0 and S -- 0 discussed in the section entitled "Generalized Optimal

Control Problem" must be satisfied at the start of the second phase. These conditions are listed

as the third and fifth conditions in psilist. The fourth and sixth conditions specify that the

states x and v are continuous; that is, the values at the end of the first phase equal the values at
the start of the second phase. Continuity conditions are also listed at the junction node of the

second and third phases. No tangency conditions are required at the end of a constrained arc.
Finally, the final time of the third phase is specified as l, but no information is known about
when the first and second phases end. These .times, which are estimated by the user in yin, are

determined by the VTOTS.

The name list file for this problem is

$namcom

XO =O.Od+O0,

VO =l.0d+O0,

XF =O.Od+O0,

VF =-1.0d+00,
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ELLIM =O.id+O0,

Send

and vtotsinfo.m is a.s follows:

prob_name='state constrained double integrator' ;

jbcv=[1,1,1] ;

load yall8.dat;

yin=yall8(: ,1:3) ;

t=[O;. 1; .2; .2; .45; .7; .7; .85;i.0] ;

yin=tablel (yin,t) ;

eta=[O;O;O;. 1;.I;. I;0;0;0] ;

yin= [yin,ones (9,3), eta] ;

yin=reshape (yin' ,54,1) ;

yin = [yin;ones(ll, i)] ;

yin(66)=O. 2 ;

yin(67)=0.7 ;

yin(68)=1.0;

The answ(;r fr()m the unc(nlstraine(l prol)h;m, sav(;(t in tile varial)le yall8.dat, ha.s |)con llsc(l to

generate initial c.stimatcs (,f the stat(;s for the constrained problcni. Usually, the costatc and

control histories (:hangc (Ira.st|tally a_s comparc(l with the unconstrained ca.sc and arc not useful

for estimates. The matrix yall is loade(t into vtotsinfo.m, and then the variable yin is defined

as the matrix containing all rows an(t the first thrcc columns of yall. These columns are the time

and the two states. Next, a new variable t is (h;fine(1 to locate the points of unknowns along thc

time line. Rcmcml,cr that this is a thr(_c-pllas(; problem with coinci(tent nodes defined at 0.2 an(l

0.7 scc. Thes(; times are just estimates a_s to when tile constrained arc starts and cn(ls. After

tim tablel routine is use(l, (;st|mates for the multipliers W arc inchl(le(l a.s tile la._t colmnn of

yin. Note that I_e('aus(; th(; constraint is a.ssumc(1 to bc inactive in tim first and third pha.scs, the

muItil)li(;r is n(;cessarily 0. The reshape comman(1 is used to produce a column v(;ctor. Finally,

estimates arc ma(h; for the (liscx(;tc multipliers u an(l the final times of each i)ha.sc.

The stat(;, ('(,star(;, contr(,l, Hamilton|an, an(1 02H/Ou 2 (;igcnvaluc histories arc shown in

figures B6 through B10, rcst)(;ctivcly, for the (:as(; jbcv = [4, 4, 4]. Notice that in figure B6 the

state xl (= x) (lo(;s not vi(,latc, th(; giv(;n constraint of l = 0.1. Also, S = v, which is denoted

with x2 in figure B6, and S = u in figur(; BS; both remain at 0 during the constrained pha.sc.

Figure B7 shows that I,oth (:(,states have (liscontimfitics at tile start of the second pha.se due

to the tangency conditions Sl)cciiic(l in psilist; these discontinuities are part of the necessary

('.(re(lit|otis list(;d in the sccti(m entitled "Generalized OI)tima] Control Pro|litre." Finally, in

tigurc B9 the Ham|It(re|an is not constant in the first and third pha.ses. This lack of consistency

in(li('at(;s that th(.' exact s(,luti(m h_Ls not t)ccn found (_Ls expectc(l). Tile Hamilton|an becomes

COlIstaIlt _'_ lllOr(_ (;l()lrlClltS arc llS(;(t.

Shooting caml(,t 1,c usc(t (m this prol)lcrn l)ccausc a constraint is irnposc(l.

The ;LsSUml)tiorl that this I)r(_Slcm is compose(1 of thrc'e arcs is truc only for certain values of

I. For a larger wduc of l, for example 0.2, the trajectory only touches tile constraint limit. In

that (:_Lse, the optimal trajectory would consist of only two I)ha.scs with no tangcncy conditions.

The MACSYMA sctul) ill(; to solve this prol)lem for I -- 0.2 would |)c

This is a fixed-final time second-order state constraint problem with a

touch-point solution.

Section 3.11, Bryson and Ho */
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stlist : [x,v] ;
ctlist : [u] ;
qlist : [[], []] ;
ellist : [0.5*u'2,0.5*u'2] ;
phi :0;
thi:O;

psilist :[x(l, l)-xO,

v(l, l)-vO,

x(2, l)-ellim,

x(l,2)-x(2, I),

v(l,2)-v(2, I),

x(2,2)-xf,

v(2,2)-vf] ;

tsilist :[thyme (2)-i],

delist :[[v,u] ,

Iv,u]] ;
namcom: [xO,vO,xf,vf,ellim] ;
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Figure B6. Constrained, double-integrator state histories
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Figure B7. Constrained, double-integrator costate histories.
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Figure BII). ('mlstrained, donlDh'-iut_'grah*r eigenvalues of I1,,,.

Random numlwrs will work for initial e.'.;limaies. The results [br this cnse are nol inch,de_l

herein.

ttow does the "user know whether lhetrajetq.ory i mwhes or rides the constraint'? Ahv_ays run

t,he mlconstra.ined probh'm first to see Whether ihe constniint '[inii'ls are violated. Firnl-order

constraints always have a c()nstnihwd arc, v_'hereas seconc't-or_'h,r constraints frequently have

touch-point solutions and constrained arcs. Fimdly, if a louch-poinl solulion is assmned and ihe
actual solutioll rides ihe consirainl, then somewhere there is a coustrain! violation.

Control-Constrained Problem

This exami)h' is taken fi'om section 3.8 of r(,fi'r('n('(' 7. The t)r()l)lem is I() minimize

.! = .dT)'_ + 2. .2 dt

where T = 10, x and u are scalars, and th(' initial condition is .i'(I)) = -19.91559(i. The slate

equation is

?:i: = h,(t)u with h(t) = 1 + I - t .27

Two control inequality constraints are imposed to enforce [u I _< 1 :

9t = u- 1 < 0

92=-(u+1)-<0
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The following mac file produces the needed plant.mex4 file:

/* This is the fixed-time control constraint problem

Section 3.8, Bryson and Ho */

glist : [[u-ulimu, - (u+uliml) ] ] ;

qlist :[[]] ;

stlist :[x,t] ;

ctlist :[u] ;

ellist :[0.5.u'2] ;

phi:O.5*x(l,2) ^2;

thi:O;

psilist: [x(l,l)-xO,t(l,l)];

tsilist : [thyme(1)-lO] ;

delist :[ [u*(l+t-3*t^2/17), I] ] ;

namcom :[xO ,ulimu ,uliml] ;

and the corresponding namcom.nml file is

$namcom

XO =-19.945596d+00,

ULIP_J =l.0d+O0,

ULIML =l.Od+O0

Send

Because the state equation is an explicit function of time (nonautonomous), an extra state is

introduced. This extra state t imitates an independent variable because it runs from 0 to 10.

The MATLAB tablel function generates initial estimates when information is known about

some variables. (See the section entitled "A Detailed Example.") One vtotsinfo.m file that

worked is listed below.

prob_name='BHO-FIX - BaH control constraint prob:';

jbcv=5;

tab=J0.00 -19.9 0.0 -.1 .1 .1 .1 .1 .1 .1;

10.0 0.0 10.0 -.1 .1 .1 .1 .1 .1 .1];

t=[0;1;3;5;7;9;10];

yin=tablel(tab,t);

yin=reshape(yin',63,1);

yin=[yin;ones(3,1);lO.O];

Results for the states, costates, and control are shown in figures Bll through B13. Notice

that the control history does not violate the specified constraints.

A Two-Stage-Rocket Problem

For one last example using a time state to set up a shooting problem, consider the following

model of a two-stage rocket. The states chosen are mass rn, altitude h, velocity V, and flight-path

angle "7; the control is the angle-of-attack a, so the dynamic equations are

Tvac
rh-

gIsp
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/z = Vsiny

II - Tcos_ - D /_sin'y
?-n r 2

 sino+ (y-- m V + r cos "y

where T = Tvac - Aep, Tvac is the thrust in a vacuum, Ae is the nozzle exit area, p is the pressure,

Isp is the specific impulse, g is the acceleration due to gravity at sea level, # is used here as
the Earth's gravitational constant, and r is the distance from the center of the Earth (where
Re + h is the radius of the Earth). The drag D and the lift L are composed of axial and normal

components

q = _pV 2

Fa = qSCa

F N = qSCN_

D = FNsina + Fa cos a

L = FN cos a - Fa sin a

where Fe and Ca are the axial force and coefficient, FN and CN are the normal force and

coefficient, p is the density, S is the reference area, and q is the dynamic pressure.

The performance index is J = m[t I, and the final time tf is free. The initial conditions

specified are m(0) = m0 = 890 149.09 kg, h(0) = 0 m, V(0) = 20.0 m/sea, and _(0) = 1.57 rad.
The drop mass of the booster is 29920 kg. The final velocity and altitude are V(tf)

= V] = 7854 m/sea and h(tf) = h I = 148 011.1 m. Other constant values are listed in the name
list file.

From a numerical standpoint, all variables should be of the same order of magnitude.

Therefore, the equations have been nondimensionalized by defining

_ m/m 0

m

h = h/hi

v = v/vI
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Figure B ll. Control-constrained problem state histories.
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Figure B13. Control-constrained problem control history.

A time state eta has been introduced so that each phase has a duration of 1. (See section entitled
"Time Scaling.") The effect of the time state is multiplication of each differential equation and
ellist by eta 2. The resulting setup file is

/* macsyma script: problem.mac */

/* Simplified NLS model;
- nondimensionalized

- with aerodynamics (analytical)

- two phase (stage) problem; no fairing drop

- mass drop at staging; staging determined at optimal time
*/

/* PARAMETERS in namcom.nml */

namcom:[tvac,spimpl,spimp2,earmu,re,grav,rmassO,hO,vO,gamO,

hf,vf,gamf,dropma,rhoO,sref,betar,ae, pO,betap,engl,

eng2,ca,cna];
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/* STATE LIST */

stlist :[rmass ,h,v,gam,eta] ;

/* CONTROL LIST */

ctlist : [alpha] ;

/* INTEGRAL C0ST LIST */

ellist :[0,0] ;

/* TERMINAL COST */

phi:-rmass(2,2);

thi:O;

/* PHASE BOUNDARY CONSTRAINTS LIST */

psilist : [

rmass (I, i)-I,

h(i, l)-hO/hf,

v(l, 1)-vO/vf,

gain(I, I)-gamO,

rmass (2, i) -rmass (I, 2) +dropma/rmassO,

h(l,2)-h(2, I),

v(l, 2)-v(2, I),

gam(1,2)-gain(2, I),

h(2,2)-i,

v(2,2)-I,

gain(2,2) -gamf

];

tsilist : [thyme(1)-I ,thyme(2)-2] ;

/* Terms for dynamic equations */

alt:h*hf;

rho:rhoO*exp(alt*betar);

faxial:ca*O.5*rho*(v*vf)^2*sref;

fnorm:cna*O.5*rho*(v*vf)'2*sref*alpha*(180/Zpi);

drag:fnorm*sin(alpha)+faxial*cos(alpha);

xlift:fnorm*cos(alpha)-faxial*sin(alpha);

p:pO*exp(alt*betap);

thrl:tvac*engl-engi*ae*p;

thr2:tvac*eng2-eng2*ae*p;

/* DYNAMICS EQUATIONS - PHASE I */

rmassdotl:(-tvac*engl)/(rmassO*grav*spimpl);

hdotl:v,sin(gam)*(vf/hf); ....

vdotl:(thr1*cos(alpha)-drag)/(rmass*rmassO*vf)

- earmu,sin(gam)/(vf,(re+alt)-2);
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gamdotl:(thr1*sin(alpha)+xlift)/(rmass*v*rmassO*vf)

+((vf*v)/(re+alt)-earmu/(v*vf*(re+alt)^2))*cos(gam);

rmassdotl:lOO*rmassdot1*eta^2;

hdotl:lOO*hdotl*eta'2;

vdotl:lOO*vdotl*eta^2;

gamdotl:lOO*gamdotl*eta^2;

/* DYNAMICS EQUATIONS - PHASE 2 */

rmassdot2:(-tvac*eng2)/(rmassO*grav*spimp2);

hdot2:v*sin(gam)*(vf/hf);

vdot2:(thr2*cos(alpha)-drag)/(rmass*rmassO*vf)

-earmu*sin(gam)/(vf*(re+alt)^2);

gamdot2:(thr2*sin(alpha)+xlift)/(rmass*v*rmassO*vf)

+((vf*v)/(re+alt)-earmu/(v*vf*(re+alt)^2))*cos(gam);

rmassdot2:lOO*rmassdot2*eta'2;

hdot2:iOO*hdot2*eta^2;

vdot2:iOO*vdot2*eta_2;

gamdot2:lOO*gamdot2*eta^2;

/* DYNAMICS EQUATIONS LIST */

delist:[[rmassdotl,hdotl,vdotl,gamdotl,O],

[rmassdot2,hdot2,vdot2,gamdot2,0]];

Several features are important in this mac file.

1. Notice that rmass, not mass, is used for the state because the FORTRAN files treat

mass as an integer.

2. Note that the states in psilist are scaled.

3. No boundary conditions on eta occur in psilist because eta has a different unknown

constant value in each phase.

4. When multiplied by the differential equations, the variable eta is squared only to ensure

a positive value. Therefore, the returned value of eta is the square root of the length of

the phase.

5. The differential equation for eta is 0 because eta is a constant.

6. Because each phase has been scaled, the final time of the first phase is 1, and the final

time of the second phase is 2, as indicated in tsilist.

Tile name list file, which defines tile values of the vehicle parameters and physical constants,

is

Snamcom

tvac = 2594963.0d+00,

spimpl = 430.55d+00,

spimp2 = 430.55d+00,

earmu = 3.98601d14,

re = 6.378145d6,

gray = 9.81d+00,

rmassO = 890149.09d+00,
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hO = O.Od+O0,

vO = 20.Od+O0,

gamO = 0.157d+01,

hf = 148011.id+00,

vf = 7854.0d+00,

gamf = O.Od+O0,

dropma = 29920.0d+00,

rhoO = 1.35924d+00,

sref = 5.518d+01,

betar=-O.140559d-03,

ae = 3.823d+00,

pO = 97136.2d+00,

betap = -0.14186d-03,

engl = 5.0d+00,

eng2 = 1.0d+O0,
ca=O.35d+00,

cna = 0.045d+00,

Send

=>

The initial estimate from trial and error is loaded into the vtotsinfo.m file with the load

command. Also, optional variables that may be defined in the vtotsinfo.m file are timestate

and scale. These variables are for plotting only. The vtotsinfo.m file is

prob_name='NLS';

jbcv=[32,32];

load yout3232.dat;

yin=yout3232;

m0=890149.09;

hf=148011.1;

vf=7854.0;

scale=[lOO.O,mO,hf,vf,l,l,l,mO/hf,mO/vf,mO,1;

lO0.O,mO,hf,vf,l,l,l,mO/hf,mO/vf,mO,1];

timestate=5;

By defining timestate=5, the x-axes of the output plots are scaled to the true lengths of

each phase. The variable scale redimensionalizes the states and costates. Scaling the states

automatically scales the costates. Plots of the states and costates (except for the piecewise-

constant time state and the corresponding time costate) are shown in figures B14 and B15 for a

finite-element run of 32 elements in each phase. The control history is shown in figure B16.
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Appendix C

Programmer File Reference List

Below is a list and brief description of all the MATLAB m-files in the VTOTS. First, a handful

of files used by both algorithms is listed. Then the m-files specifically used by the finite-element

code are listed, followed by the shooting code m-files.

VTOTS Driver Subroutines

alert.m issues error or warning messages as prompted by vtots.m

fems.m produces the initial estimate for shooting after a finite-element run

plotter.m produces plots of the output after a successful finite-element or shooting
run; called by vtots.m, but may be called by the user directly

printfull.m a modified print.m file that prints the plots produced by plotter.m
in landscape mode; type printfull instead of print at the MATLAB

prompt

vtots.m the main driver routine for VTOTS; reads vtotsinfo.m, checks for a

proper initial guess, calls the finite-element and shooting algorithms, and

calls the plotter.m routine

Finite-Element Method

enphas.m defines the error vector and Jacobian at the end of a phase

errorvec.m finds an error vector for use by fsolve.m

febc.m defines the error vector and Jacobian for the costate boundary conditions

at the beginning and end of each phase

fecontin.m provides MATLAB's ode45.m integrator with the differential equa-
tions needed to solve the system of equations with a simple continuation
method

fejac.m calls stphas.m, inphas.m, and enphas.m to fill in most of the error
vector or Jacobian

feocbvp.m the main driver routine for the finite-element code; determines the prob-

lem parameters and prompts the user for a solution method

fepsi.m defines the error vector and Jacobian for the boundary conditions held in

psilist

fesolv.m the driver subroutine to fill the error vector and Jacobian; also solves the

linearized system, if appropriate

geth.m calculates the Hamiltonian H and the eigenvalues of 02H/Ou 2 for plotting

purposes

inphas.m defines the error vector and Jacobian for the elements on the interior of a

phase

jacob.m finds an error vector for use by fsolve.m

morenode.m uses the MATLAB linear interpolation routine to generate new initial

estimates for feocbvp.m
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nodal.m

solve.m

stphas.m

timcond.m

unod.m

extracts nodal values of states, costates, and controls; assembles these

values with the appropriate time vector in a matrix called yall for plotting

by plotter.m; the user may save yall and call plotter.m directly, if
desired

called by feocbvp.m when the Newton method is chosen by the user;

determines the step-size logic and convergence criteria

defines the error vector and Jacobian for the equations at the beginning of

a phase

defines the error vector and Jacobian that corresponds to the boundary

conditions held in tsilist and the boundary conditions on the Hamiltonian

uses a Newton method to determine the nodal values of the control; called

by nodal.m

geths.m

getu.m

jacobi.m

makepsi.m

psiend.m

psist.m

rhs.m

salvo.m

ushape.m

varstr.m

Shooting Method

calculates the Hamiltonian H and the eigenvalues of 02H/Ou 2 for plotting

purposes

solves for the optimal control using a Newton iteration

calculates an analytical Jacobian matrix needed by rhs.rn

calculates the error vector 9, used to solve for the initial values with a

Newton iteration

calculates the O#/OXf matrix that is part of the Newton step to find the
initial values

calculates the Oq/OXo matrix that is part of the Newton step to find the
initial values

calculates the right side of the differential equations integrated by the

ode45.m integrator

the driver m-file for the shooting code; all integrations and error calcula-
tions are done in this file

conditions a control guess for getu.m

saves variables so that fewer globals are needed
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